
S H I P

SIMPLE HOST INTERSOCKET PROTOCOL

9 February 1995

Version 1.0

Authors:

Brian Beattie, Intel Corporation

Marty Halvorson, LANL

Craig Idler, LANL

Jeff Kravitz, IBM

Mitch Sukalski, LANL

Richard Thomsen, LANL (editor)

Abstract
This document describes a mechanism for an off-board protocol processor to supply Internet Protocol
processing to an attached host. There are new classes of computers and peripherals that are not well
architected for onboard Internet Protocol processing, such as massively parallel machines and disk arrays,
which provided the impetus for this proposal. It is designed to provide a simple method of transferring
data between an application running on the host and the protocol processor, and to be much simpler to
implement than the Internet Protocol. In addition, this protocol may help stimulate a growing area of
research where I/O protocol processing is not shared with the "main" CPU. At Los Alamos National
Laboratory (LANL), the initial intent is to implement this on machines that are physically separate, but
connected via some network medium. This particular protocol in no way hinders implementing it using a
dedicated I/O processor or process on the same host, nor is it dependent on any particular physical
network.

Introduction

SHIP is designed to be used between a host computer and another computer acting as
an off-board protocol processor. The protocol processor receives control and data messages
from the host and converts the data to the Internet family of protocols for transmission over a
network. Likewise, it receives control and data messages using the Internet family of
protocols from the network, and sends the data to the host. This transaction relieves the host
from the burden of protocol processing. It is especially useful for disk arrays and massively
parallel machines, which are not suited for protocol processing.

The code that runs on the host implements a socket library, which looks to the
application as standard Berkeley socket interface calls. It packages up these calls in the
following defined formats, and sends them to the Protocol Processor. In this manner,
applications on the host see the standard system call interface and do not need to be modified
to run on the host. The Protocol Processor itself handles all the socket and protocol work.

Most socket calls package up the necessary parameters and send them to the Protocol
Processor to be executed. Some calls, such as the read and write commands, are a bit more
complicated. The SELECT call is also more complicated, as applications may perform a select
on some sockets as well as some local devices, such as a terminal. Select is implemented as a
status call within the socket library, where the host can poll the Protocol Processor to see the
status of the sockets of interest, and can block or not, as desired. It can also cancel any
blocking status call.

The socket calls that are implemented are as follows:

Socket Creation
Bind
Connect
Listen
Accept
Accept (non-blocking)
Write
Read (blocking and non-blocking)
Close
Shutdown
Getsockopt
Setsockopt
Status
Status (non-blocking)
Cancel Status

Definitions

General Definitions

Page1

Definitions for Protocol Processor

These definitions are used in the descriptions of the actions of the PP, and not
definitions of fields in the protocol packets themselves.

Socket Control Block (SCB):
The internal PP control block used to contain all information about a particular socket.

Page2

Protocol Format

The format of the SHIP header consists of the following fields. All fields are 32 bits
unless stated. All information is stored in network byte order.

Host ID: ID of host making request. This is used when more than one host is
connected to a protocol processor. This field is 8 bits wide.

Status:On return, status of protocol. If there was a protocol error, such as an invalid
field, it is indicated here. If the protocol was valid, but the
command was not performed, then it indicates that a command
error occurred. This field is 8 bits wide.

Function Code: The command to be performed. This field is 16 bits wide, and is
divided up into a Major Function Code (upper 8 bits), and a Minor
Function Code (lower 8 bits). At this point, the Major Function
Code is zero for these operations, and all others are reserved.

Request ID: A unique ID for this request. This must be monotonically increasing (i.e.,
each succeeding one is larger than the last, except for wrap
around). They are not required to be sequential.

Host Socket ID 1: First ID word used by the host to identify this socket. It is not
interpreted by the Protocol Processor, but is returned so the host
can use it to index into its tables.

Host Socket ID 2: Second ID word used by the host to identify this socket. It is not
interpreted by the Protocol Processor, but is returned so the host
can use it to index into its tables.

PP Socket ID 1: First ID word used by the Protocol Processor to identify this socket.
It is not interpreted by the host, but is returned so the Protocol
Processor can use it to index into its tables.

PP Socket ID 2: Second ID word used by the Protocol Processor to identify this
socket. It is not interpreted by the host, but is returned so the
Protocol Processor can use it to index into its tables.

Extension Length: The number of bytes of additional information following this
header.

Data Length: The number of bytes of data following this header.
Command Status: In the response message, the status of the command. This tells the

host what the result of the command was. For example, if a Create
Socket was requested, but no more sockets were available, the
Status field would indicate command error, and the Command
Status field would indicate no more sockets. This field is reserved
on the commands.

Parameter: This contains a parameter for the command or response.

The data area consists of the data needed for the socket calls in network byte order.

Page3

All addresses, expressed by Server Name, are passed using the sockaddr structure.
This structure is documented in an appendix.

For HIPPI links, the SHIP header is put in the HIPPI-FP D1 area. The data, if any, is
put in the D2 area. For non-HIPPI links, the header and data together make up the payload of
the link protocol.

Reserved fields must be sent as zero.

Page4

Initialization Commands

These commands tell the Protocol Processor that the host wishes to initialize the
connection or a socket.

Page5

Initialize Command
This command tells the Protocol Processor to initialize the socket processing for this

particular host. Any currently open sockets are closed, and the Protocol Processor assumes
that the host has restarted.

The options field gives overall SHIP processing options for that host. Currently
defined options are as follows:

None Yet Defined

Header:

PP Actions:

Close any existing sessions with peer nodes (discarding any buffered data).
Deallocate all outstanding resources (e.g. buffers, data, SCB's).
Reset all internal variables, switches, etc. to initial state.
Return SHIP Initialize response to host immediately.

Host ID Reserved Function Code = Initialize
Request_id
Reserved
Reserved
Reserved
Reserved
Extension Length = 0
Data Length = 0
Reserved
Options

Page6

Initialize Response
This response tells the host when the Protocol Processor has been initialized for that

host.

The options field gives overall SHIP processing options for that host. Currently
defined options are as follows:

None Yet Defined

Header:

Possible Status Values:

SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code

Host ID Status Function Code = Initialize
Request_id
Reserved
Reserved
Reserved
Reserved
Extension Length = 0
Data Length = 0
Reserved
Options

Page7

Socket Creation Command
This command tells the Protocol Processor to set up a socket for communication with a

remote system, specifying the protocol to be used.

The options field gives options for that socket. Currently defined options are as
follows:

PP must read and write exact amount of data specified.

Header:

PP Actions:

Allocate an SCB for a new socket and initialize it.
If allocation is not possible (i.e. all SCB's are in use)

Return an error in the Create response SHIP packet.
Otherwise,

Save any specified option values in the new SCB.
Return a Create response SHIP packet containing the PP Socket ID.

Host ID Reserved Function Code = Create Socket
Request_id
First Host Socket ID word
Second Host Socket ID word
Reserved - must be zero
Reserved - must be zero
Extension Length = 16
Data Length = 0
Reserved
Reserved
Domain
Type
Protocol
Options

Page8

Socket Creation Response
This response tells the host if the Protocol Processor was successful in setting up a

socket.

The options field gives options for that socket. Currently defined options are as
follows:

None yet defined.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_CMDERROR Command error on creation of socket

Host ID Status Function Code = Create Socket
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 16
Data Length = 0
Command Status
Reserved
Maximum reads outstanding
Maximum writes outstanding
Maximum read size allowed
Maximum write size allowed

Page9

Socket Commands

These commands tell the Protocol Processor that the host wishes to perform some
action on the socket itself.

Page10

Bind Command
This command binds a name (Internet address) with the local socket set up by the

Protocol Processor by the socket create command. This name will be used by remote hosts to
talk with this socket.

If the server name is zero (unspecified), the PP will fill in the default host name. If the
port number is zero (unspecified), it will use an unused port.

Header:

PP Actions:

Save the name specified by the Bind SHIP packet in the SCB.
Return Bind response SHIP packet to host immediately.

Host ID Reserved Function Code = Bind
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Reserved
Reserved

Server Name

Page11

Bind Response
This response tells the host if the Protocol Processor was successful in binding the name

to the socket, and returns the address and port that was assigned.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on creation of socket

Host ID Status Function Code = Bind
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Page12

Connect Command
This command tells the Protocol Processor to connect this socket to the specified socket

on the remote host.

Header:

PP Actions:

Attempt to make a network connection with the peer node whose name is specified in
the Connect SHIP packet.

If the connection is acknowledged by the peer
Set the SCB to a state that allows data transfer.
Return a Connect response SHIP packet indicating success.

If a timeout occurs before an acknowledgment is received from the peer
Return a Connect response SHIP packet indicating an Error.

If the peer explicitly rejects the connection attempt
Return a Connect response SHIP packet indicating an Error.

Host ID Reserved Function Code = Connect
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Reserved
Reserved

Server Name

Page13

Connect Response
This response tells the host if the connection was successful.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on connect

Host ID Status Function Code = Connect
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Reserved

Page14

Listen Command
This command tells the Protocol Processor to listen for incoming requests to the socket,

and the maximum number of outstanding connections that may be queued.

Header:

PP Actions:

Set the SCB into a state that allows connection attempts from other nodes.
Allow for a specified number of queued connection attempts.
If the listen succeeds, i.e. state change was acceptable

Return a Listen response SHIP packet indicating success.
If the listen fails, i.e. illegal state change

Return a Listen response SHIP packet indicating an Error.
Note: The Listen response does NOT indicate that a connection attempt was received.

Host ID Reserved Function Code = Listen
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Maximum outstanding connections

Page15

Listen Response
This response tells the host the status of the listen command.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on listen

Host ID Status Function Code = Listen
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Reserved

Page16

Accept Command
This command tells the Protocol Processor to accept connections on this socket, and

allows a connection from the remote host. It will not respond until a connection is accepted.

Header:

PP Actions:

Set the SCB into a state that causes the next (or current) connection attempt from a
network peer to be acknowledged to the peer.

If a connection attempt is already queued
Create a new socket for the connection, and initialize its SCB.
Acknowledge that connection to the peer.
Set the new SCB to a state that allows data transfer.
Return a successful Accept response to the host, containing the new socket ID.

Otherwise,
Mark the SCB indicating that an Accept is pending
Delay the Accept response until a connection attempt is received from the network,

and acknowledged.
Later, when a connection attempt is received from the network

Create a new socket for the connection, and initialize its SCB.
Acknowledge that connection to the peer
Set the new SCB to a state that allows data transfer.
Return a successful Accept response to the host, containing the new socket ID.

Host ID Reserved Function Code = Accept
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Reserved

Page17

Accept Response
This response tells the host that an incoming connection has been established.

The PP Socket ID word indicates the new socket that was created by the accept, not the
one originally specified by the ACCEPT command.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on accept
SHIP_STAT_CANCELED Command was canceled

Host ID Status Function Code = Accept
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Page18

Accept Noblock Command
This command tells the Protocol Processor to accept connections on this socket, and

allows a connection from the remote host. It will return immediately with a response.

Header:

PP Actions:

If a connection attempt from a peer node is pending
Create a new socket for the connection, and initialize its SCB.
Acknowledge that connection to the peer
Set the new SCB to a state that allows data transfer.
Return a successful Accept response to the host, containing the new socket ID.

Otherwise,
Return an error response to the host.

Host ID Reserved Function Code = Accept Noblock
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Reserved

Page19

Accept Noblock Response
This response tells the host if an incoming connection has been established. If it would

have blocked, waiting for a connection, it will return with extension length of zero and no
server name.

The PP Socket ID word indicates the new socket that was created by the accept, not the
one originally specified by the ACCEPT command.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on accept

Host ID Status Function Code = Accept Noblock
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Page20

Close Command
This command tells the Protocol Processor that the socket is to be closed. The

connection is closed in both directions, and the socket is closed.

Header:

PP Actions:

Discard any data enqueued at this SCB in the PP for transmission, and any data
enqueued at this SCB awaiting reception by the host.

Send an end-of-data indication to the peer node.
Do not wait for an acknowledgment to the end-of-data indication.
Mark the SCB as closed, preventing any further SHIP functions to be issued to this

socket by the host (until the socket ID is subsequently re-allocated by Create).
Any pending operations awaiting responses (e.g. Status, Accept, Read, etc.) will not be

completed.
Any data received from the network for this socket should be discarded.
Note: It is prudent to ensure that this socket ID is not reused by Create for some period

of time, to reduce the possibility of outstanding data on the network being sent to a
new incarnation of this socket ID.

Host ID Reserved Function Code = Close
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Reserved

Page21

Close Response
This response tells the host the result of the close.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on close

Host ID Status Function Code = Close
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Reserved

Page22

Shutdown Command
This command tells the Protocol Processor that the connection is being shut down. The

value Shutdown How indicates the manner of the shutdown.

Header:

The values for the Shutdown How field is as specified in the socket description; 0 for
no more input, 1 for no more output, and 2 for neither input nor output.

PP Actions:

Mark the SCB indicating that no further Reads/Writes will be permitted.
If Writes are no longer permitted

Any data already enqueued in the PP for transmission should be sent to the peer
node and an indication of end-of-data will be sent afterward to the peer node.

Delay the response to the host until the end-of-data indication is acknowledged by
the peer, or until some timeout condition occurs.

If the end-of-data indication is acknowledged by the peer
Return a successful indication to the host.
If the wait for the acknowledgment times out
Return an error response to the host.

If Reads are no longer permitted
Any previously received network data enqueued in the PP not yet received by the

host should be discarded.

Host ID Reserved Function Code = Shutdown
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Shutdown How

Page23

Shutdown Response
This response tells the host the result of the shutdown command.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on shutdown

Host ID Status Function Code = Shutdown
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Reserved

Page24

Status Command
This command tells the Protocol Processor to return a response when data has

appeared for a socket. A response will not be made until there is data to be read or, if writes
were prevented, until writes are permitted on this socket.

Header:

PP Actions:

If there is previously received network data enqueued at the SCB
Return a Status Response SHIP packet, containing the Status of the socket

Otherwise,
Mark the SCB as having a Status command pending, indicating that when any

network data arrives for the socket, a Status Response SHIP packet is to be sent
back to the host.

Later, when any data is received from the network
Return a successful Status response to the host.
Mark the SCB as no longer having a Status command pending,

Host ID Reserved Function Code = Status
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Reserved

Page25

Status Response
This response tells the host the status of the socket.

The Bytes Ready for Transfer tells the host how much data the Protocol Processor
currently has buffered for the host on this socket.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on status
SHIP_STAT_CANCELED Command was canceled

Host ID Status Function Code = Status
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 12
Data Length = 0
Command Status
Reserved
Bytes Ready for Transfer
Current State
Number of reads queued

Page26

Status Noblock Command
This command tells the Protocol Processor to return a response when data has

appeared for a socket. The response will be returned immediately.

Header:

PP Actions:

Immediately return a Status Response SHIP packet, containing the Status of the socket

Host ID Reserved Function Code = Status Noblock
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Reserved

Page27

Status Noblock Response
This response tells the host the status of the socket.

The Bytes Ready for Transfer tells the host how much data the Protocol Processor
currently has buffered for the host on this socket.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on status

Host ID Status Function Code = Status Noblock
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 12
Data Length = 0
Command Status
Reserved
Bytes Ready for Transfer
Current State
Number of reads queued

Page28

Cancel Command
This command tells the Protocol Processor to cancel any previous blocking command

(such as ACCEPT, READ, WRITE, or STATUS, etc.), and not to send a response for it (a
WRITE can be canceled only if the PP is holding the response until there is some buffer space
available).

Header:

PP Actions:

If the Cancel is for Status Block, or Accept Block commands, cancel them, returning
Status or Accept Responses indicating that they were canceled.

If the Cancel is for Read commands and some are pending, cancel all of them, returning
a Read Response only for the last one, indicating that it was canceled.

If none of the above commands are pending, return a Cancel Response.

Host ID Reserved Function Code = Cancel
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Reserved

Page29

Cancel Response
This response is only returned if no blocking request was canceled when the CANCEL

was issued.

If there is no command to be canceled, then this response will indicate why the cancel
command was not able to complete. If it does cancel a blocking command, the response will
be the normal response to that command with a status of canceled.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPARAM Invalid parameter to call
SHIP_STAT_INVPPSOC Invalid PP Socket ID words

Host ID Status Function Code = Cancel
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Reserved

Page30

Getsockopt Command
This command allows the host to get some options from the socket.

Header:

PP Actions:

Parse the SHIP packet to determine the identification of the option data being requested
If the Parse is successful

Return the specified information to the host, immediately.
Otherwise,

Return a Getopt response packet indicating success.

Host ID Reserved Function Code = Get Socket Option
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 8
Data Length = 0
Reserved
Reserved
Level
Socket Option Name

Page31

Getsockopt Response
This response tells the host the status of the Getsockopt command.

The data contains the current data for the command. The value, if any, is in Socket
Option Value, and the length is either zero or four (bytes).

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on get socket option

Host ID Status Function Code = Get Socket Option
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 16
Data Length = 0
Command Status
Reserved
Level
Socket Option Name
Socket Option Length
Socket Option Value

Page32

Setsockopt Command
This command allows the host to set some options for the socket.

The value, if any, is in Socket Option Value, and the length is either zero or four.

Header:

PP Actions:

Parse the SHIP packet to determine which option is being set.
If the Parse is successful

Store the necessary option values in the SCB.
Return a Setopt response packet indicating success.

Otherwise,
Return a Setopt response packet indicating error.

Host ID Reserved Function Code = Set Socket Option
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 16
Data Length = 0
Reserved
Reserved
Level
Socket Option Name
Socket Option Length
Socket Option Value

Page33

Setsockopt Response
This response tells the host the status of the Setsockopt command.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on set socket option

Host ID Status Function Code = Set Socket Option
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Reserved

Page34

Data Transfer Commands

These commands tell the Protocol Processor that the host wishes to transfer data
transfer between them.

Page35

Write Command
This command tells the Protocol Processor that the host wants to write data, and the

data is included in the command. Block numbers must be a number starting at 1 with the first
write, and incrementing by one for each subsequent write. This allows the PP to detect if a
write is missing.

If a write is missing or in error, all subsequent writes are ignored by the PP (which
returns a status code of SHIP_STAT_SEQUENCE) until the missing or erroneous write is
redone.

The server name tells the destination to which this data is to be sent. It is only present
if there is not a connection already in process. Otherwise, Extension Length is zero.

Header:

Data:

PP Actions:

If this command exceeds the maximum number of outstanding Write commands,
discard the command with no response.

If the data length specified in this command exceeds the maximum supported for this
PP, discard the data, returning a response indicating the error, and ignore all subsequent
Write commands with larger Request ID numbers until a Write command is issued with the
same Request ID as the failed one and a legal length.

Otherwise,

Enqueue the received data for transmission to the peer node.
If there is sufficient buffer space to handle the additional data, return a Write

response SHIP packet, indicating that the Write was successful.

Host ID Reserved Function Code = Write
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Reserved
Block Number

Server Name

Data being Transferred

Page36

Note: All Write Responses contain the amount of free buffer space for subsequent
Writes.

If there is no free buffer space available after the current Write, then the response
must be delayed until space becomes available. Therefore the response should be
enqueued at the SCB.

Otherwise,
Return an unsuccessful Write response to the host. indicating NO ROOM

available.

Page37

Write Response
This response tells the host if the transfer was successful or not.

Header:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on write
SHIP_STAT_SEQUENCE Write out of sequence
SHIP_STAT_NOROOM No room for write

Host ID Status Function Code = Write
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Command Status
Buffer Space Left

Page38

Read Command
This command tells the Protocol Processor that the host wants to read data, and the

data should be sent immediately. The data transfer size tells the Protocol Processor the total
amount of data that the host wishes to read. If there is no data, the PP waits until there is data
before returning the response.

The Request ID Ack will tell the PP that all read requests up to but not including this
request ID have been received, and the data may be discarded.

Header:

PP Actions:

If this command exceeds the maximum number of outstanding Read commands,
discard the command with no response.

If the Request Id field is the same as the one in the previous Read command, return the
same data that was returned by the previous Read command.

Using the Request ID ACK field in this command free the all data awaiting
acknowledgment from previous Read commands (i.e. ones with lower Request ID
fields).

If there is previously received network data enqueued at the socket
Immediately return a Read response SHIP packet containing the data requested or

the data available, whichever is smaller, unless the SCB was created with the
EXACT DATA SIZE option. If so, and there is less data enqueued than was
requested, continue as if no data was enqueued, below.

Enqueue the data buffer at the SCB, and mark the SCB to indicate that Read Data is
awaiting acknowledgment.

Otherwise
Mark the SCB as having a Read Block response pending, indicating that when any

network data arrives for the socket, a Read response SHIP packet containing the
data, is to be sent back to the host

Later, when sufficient data is received from the network (sufficient being defined to
mean any amount, if the socket does not have the EXACT DATA SIZE option
set, or the amount requested if the option is set).

Return a Read response to the host, containing the data.

Host ID Reserved Function Code = Read
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Request ID Ack
Data Transfer Size

Page39

Enqueue the data buffer at the SCB, and mark the SCB to indicate that Read Data is
awaiting acknowledgment.

Mark the SCB as no longer having a Read response pending,
Note: All Read Responses contain the amount of data enqueued for subsequent Reads.

Page40

Read Response
This response gives the data to the host.

The server name tells the source from which this data was received. It is only present if
there is not a connection already in process. Otherwise, Extension Length is zero.

Head

Data:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on read
SHIP_STAT_CANCELED Command was canceled

Host ID Status Function Code = Read
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Data being Transferred

Page41

Read Noblock Command
This command tells the Protocol Processor that the host wants to read data, and the

data should be sent immediately. The data transfer size tells the Protocol Processor the total
amount of data that the host wishes to read. If there is no data, the PP returns the response
indicating no data available.

The Request ID Ack will tell the PP that all read requests up to but not including this
request ID have been received, and the data may be discarded.

Header:

PP Actions:

If this command exceeds the maximum number of outstanding Read commands,
discard the command with no response.

If the Request Id field is the same as the one in the previous Read command, return the
same data that was returned by the previous Read command.

Using the Request ID ACK field in this command free the all data awaiting
acknowledgment from previous Read commands (i.e. ones with lower Request ID
fields).

If there is previously received network data enqueued at the socket
Immediately return a Read response SHIP packet containing the data requested or

the data available, whichever is smaller, unless the SCB was created with the
EXACT DATA SIZE option. If so, and there is less data enqueued than was
requested, continue operation as if a Read (block) was issued.

Enqueue the data buffer at the SCB, and mark the SCB to indicate that Read Data is
awaiting acknowledgment.

Otherwise
Immediately return a Read Response indicating no data available.
Note: All Read Responses contain the amount of data enqueued for subsequent

Reads.

Host ID Reserved Function Code = Read Noblock
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Request ID Ack
Data Transfer Size

Page42

Read Noblock Response
This response gives the data to the host. If there is no data, the data length is set to

zero.

The server name tells the source from which this data was received. It is only present if
there is not a connection already in process. Otherwise, Extension Length is zero.

Header:

Data:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on read

Host ID Status Function Code = Read Noblock
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Data being Transferred

Page43

Read Redirect Command
This command tells the Protocol Processor that the host wants to read data, and the

data should be sent immediately. However, the data is to be sent to another device. The data
transfer size tells the Protocol Processor the total amount of data that the host wishes to read.
If there is no data, the PP waits until there is data before returning the response.

The Request ID Ack will tell the PP that all read requests up to but not including this
request ID have been received, and the data may be discarded.

Header:

Data:

PP Actions:

If this command exceeds the maximum number of outstanding Read commands,
discard the command with no response.

If the Request Id field is the same as the one in the previous Read command, return the
same data that was returned by the previous Read command.

Using the Request ID ACK field in this command free the all data awaiting
acknowledgment from previous Read commands (i.e. ones with lower Request ID
fields).

If there is previously received network data enqueued at the socket
Immediately return a Read Redirect response SHIP packet to the requester, and a

Data Packet to the redirected host, containing the data requested or the data
available, whichever is smaller, unless the SCB was created with the EXACT
DATA SIZE option. If so, and there is less data enqueued than was requested,
continue as if no data was enqueued, below.

Enqueue the data buffer at the SCB, and mark the SCB to indicate that Read Data is
awaiting acknowledgment.

Otherwise

Host ID Reserved Function Code = Read Redirect
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Request ID Ack
Data Transfer Size

Address information and header to be used

Page44

Mark the SCB as having a Read Redirect response pending, indicating that when
any network data arrives for the socket, a Read Redirect response SHIP packet
containing the data, is to be sent back to the host

Later, when sufficient data is received from the network (sufficient being defined to
mean any amount, if the socket does not have the EXACT DATA SIZE option
set, or the amount requested if the option is set).

Return a Read Redirect response SHIP packet to the requester, and a Data Packet to
the redirected host, containing the data.

Enqueue the data buffer at the SCB, and mark the SCB to indicate that Read Data is
awaiting acknowledgment.

Mark the SCB as no longer having a Read Redirect response pending.
Note: All Read Responses contain the amount of data enqueued for subsequent Reads.

Page45

Read Redirect Response
This response gives the data to the destination as specifed by the READ REDIRECT

command.

The server name tells the source from which this data was received. It is only present if
there is not a connection already in process. Otherwise, Extension Length is zero.

Header:

Data:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on read
SHIP_STAT_CANCELED Command was canceled

Host ID Status Function Code = Read Redirect
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Header specified from command

Data being transferred

Page46

Read Redirect Noblock Command
This command tells the Protocol Processor that the host wants to read data, and the

data should be sent immediately. Data is to be sent to a different host. The data transfer size
tells the Protocol Processor the total amount of data that the host wishes to read. If there is no
data, the PP returns the response indicating no data available.

The Request ID Ack will tell the PP that all read requests up to but not including this
request ID have been received, and the data may be discarded.

Header:

Data:

PP Actions:

If this command exceeds the maximum number of outstanding Read commands,
discard the command with no response.

If the Request Id field is the same as the one in the previous Read command, return the
same data that was returned by the previous Read command.

Using the Request ID ACK field in this command free the all data awaiting
acknowledgment from previous Read commands (i.e. ones with lower Request ID
fields).

If there is previously received network data enqueued at the socket
Immediately return a Read Redirect response SHIP packet to the requester, and a

Data Packet to the redirected host, containing the data requested or the data
available, whichever is smaller, unless the SCB was created with the EXACT
DATA SIZE option. If so, and there is less data enqueued than was requested,
continue operation as if a Read Redirect (block) was issued.

Enqueue the data buffer at the SCB, and mark the SCB to indicate that Read Data is
awaiting acknowledgment.

Otherwise

Host ID Reserved Function Code = Read Redirect Noblk
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Request ID Ack
Data Transfer Size

Address information and header to be used

Page47

Immediately return a Read Redirect Response indicating no data available.
Note: All Read Responses contain the amount of data enqueued for subsequent Reads.

Page48

Read Redirect Noblock Response
This response gives the data to the destination specired in the READ REDIRECT

NOBLOCK command. If there is no data, the data length is set to zero.

The server name tells the source from which this data was received. It is only present if
there is not a connection already in process. Otherwise, Extension Length is zero.

Header:

Data:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on read

Host ID Status Function Code = Read Redirect Noblk
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Header specified from command

Data being transferred

Page49

Peek Command
This command tells the Protocol Processor that the host wants to read data, but do not

delete the data when completed. The data length tells the Protocol Processor the total amount
of data that the host wishes to peek. If there is no data present, the data length will be zero.
Total data requested cannot exceed 992 bytes.

If a read request of any type follows this command, it cannot be redone, as the data
will have been sent to the host.

Header:

PP Actions:

If there is previously received network data enqueued at the socket
Immediately return a Peek Response SHIP packet, containing the data requested, up

to 1k bytes.
Otherwise

Immediately return a Peek response SHIP packet indicating no data available.

Host ID Reserved Function Code = Peek
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = 0
Data Length = 0
Reserved
Data Transfer Size

Page50

Peek Response
This response gives the data to the host, but does not delete it from the PP buffers.

Data length will specify the amount of data being returned. If no data is available, a zero will
be returned.

The server name tells the source from which this data was received. It is only present if
there is not a connection already in process. Otherwise, Extension Length is zero.

Header:

Data:

Possible Status Values:

SHIP_STAT_MUSTINIT Initialization not done
SHIP_STAT_UNREC_HOST Unrecognized Host ID
SHIP_STAT_UNREC_FCN Unrecognized function code
SHIP_STAT_INVLENGTH Data length was not valid
SHIP_STAT_INVPPSOC Invalid PP Socket ID words
SHIP_STAT_CMDERROR Command error on peek

Host ID Status Function Code = Peek
Request_id
First Host Socket ID word
Second Host Socket ID word
First PP Socket ID word
Second PP Socket ID word
Extension Length = sizeof (Server Name)
Data Length = 0
Command Status
Reserved

Server Name

Data being Transferred

Page51

Descriptions

Sequences

All transactions are sequential. The PP must keep the status of any request (or be able
to recreate the status) in case the host needs to redo the transaction. Upon receiving a new
transaction with a different request ID, the PP assumes that the previous transaction has been
successfully completed and will not be repeated, and thus can discard the status of the last
request. Also, the host cannot issue another transaction until it has received a response from
the last one, or it has timed out.

The only exception to this is during the READ and WRITE sequences. Multiple READ
and WRITE commands may be done simultaneously. Each READ command acknowledged
one or more previous READ commands, allowing the PP to discard data that has been
successfully transferred to the host.

Multiple WRITE commands may also be done. However, if a WRITE command fails,
all subsequent WRITE commands will be discarded with a response of OUT OF SEQUENCE
until the failing write is reissued successfully. This prevents out of order data from a
successful WRITE command getting out before the data from a previous unsuccessful WRITE
command.

Errors

If there is a transmission error on a received message (for example, bad parity on a
HIPPI packet), the message is discarded.

If the host fails to receive a response in the specified timeout period, it should reissue
the request with the same request ID. If the response was already sent but lost, the Protocol
Processor will resend the response.

Blocking requests can be terminated before the response comes by using the CANCEL
command. The request will be terminated, and the host will receive a response with a status
of CANCELED. If the request finishes before the CANCEL command takes effect, then the
host will receive the normal command response, as well as a CANCEL response indicating
nothing was available to cancel.

When a connection is terminated, the Protocol Processor will close down the socket and
remember the state and error that caused the connection to terminate. The next message sent
by the host on that socket will receive a response indicating an error that the socket has been
closed. State of the socket will be maintained until the host sends a close or shutdown request.

Write Sequence

To perform a write, the host issues a Socket Write request message telling the Protocol
Processor (PP) the server name for the write and the total size of the data to be written. The
data to be written is also included in the packet. The PP responds with a Write Response, and
processes the data.

Page52

Read Sequence

To perform a read, the host issues a Socket Read request message. The PP immediately
responds with a Read response, including the data that is currently available, up to the size
requested.

If the host detects an error in receiving the data, it can reissue the Read request. The
Read request specifies a previous read which it acknowledges the data transferred to the host,
and the PP is free to discard those buffers.

The difference between blocking and non-blocking Read requests are when the PP does
not currently have any data available. In a non-blocking Read request, the PP returns a status
indicating that no data is available. In a blocking Read request, the PP waits for data before
returning the response.

Read Peek Sequence

To perform a peek, the host issues a Socket Read Peek request message, telling the PP
how much data it wants to receive on this socket, limited to a maximum size of 992 bytes. The
PP responds with a Read Peek response with the actual data. It does not discard the data from
its buffers.

Incoming data on sockets with no read posted

If the PP receives data on an existing socket for which the host has yet to post a Read
Request, the PP will attempt to buffer up a certain amount of this data (probably 32 KBytes or
so, depending on available memory) and will wait for the host to issue the read. This data
will be unacknowledged to the sending remote-end, so that the PP can discard this data if it
needs the buffer space. It is assumed that the remote end will time out and resend this data
until it is acknowledged.

When the host finally issues a Read Request on this socket, the PP will then
acknowledge this data to the remote-end. This allows the remote-end to send more data to the
host.

PP Data Requirements for HIPPI

When using HIPPI, the Protocol Processor deals with bursts, and maintains
transmission on burst boundaries. If a burst is in error, the entire burst is discarded. If data is
duplicated from a host, duplicate data is discarded to burst boundaries. Once data is
acknowledged, it is discarded on burst boundaries. It is recommended that packets be sent
and received in full bursts, especially subsequent reads. If the end of a message does not line
up on a burst boundary, or the start of the next message does not, the Protocol Processor will
use extra processing to line up the data for transmission and will not operate in an optimal
fashion.

Page53

It is recommended that, for large data transfers (> 512 bytes), the data start at the
beginning of the second burst (using the B bit in the FP header); for small transfers (< 512
bytes), the data can be in the same burst as the SHIP header.

Page54

Acknowledgments

This project is the work of the Network Engineering Group of the Computing and
Communications Division of Los Alamos National Laboratory, where John Morrison is the
group leader. The engineers responsible for the design of the protocol are Richard Thomsen,
Craig Idler, Marty Halvorson, and Mitch Sukalski.

Also working on the development of the protocol are Jeff Kravitz of the Thomas J.
Watson Research Center of IBM in Yorktown Heights, New York, and Brian Beattie who is
contractor for the Supercomputer Division of Intel in Hillsborough, Oregon.

Page55

Appendix A - SHIP Values

SHIP Values

Values for the SHIP ULP-ID in the HIPPI-FP header are as follows:
SHIP_ULP_ID_MESSAGES 2 SHIP messages
SHIP_ULP_ID_DATA 3 SHIP data (optional)

The function codes for SHIP messages are as follows:
SHIP_FCN_INITIALIZE 1 Initialize communications
SHIP_FCN_CREATE 2 Create Socket
SHIP_FCN_BIND 3 Bind address to socket
SHIP_FCN_CONNECT 4 Connect to remote socket
SHIP_FCN_LISTEN 5 Listen for connection
SHIP_FCN_ACCEPT 6 Accept connection
SHIP_FCN_ACCEPTNOBLK 7 Accept connection - non-blocking
SHIP_FCN_CLOSE 8 Close socket
SHIP_FCN_SHUTDOWN 9 Shut down socket
SHIP_FCN_STATUS 10 Get status of socket
SHIP_FCN_STATUSNOBLK 11 Get status - non-blocking
SHIP_FCN_CANCEL 12 Cancel status of socket
SHIP_FCN_GETSOPTION 13 Get socket option
SHIP_FCN_SETSOPTION 14 Set socket option
SHIP_FCN_WRITE 20 Write data to socket
SHIP_FCN_READ 30 Read data from socket
SHIP_FCN_READNOBLK 31 Read data - non-blocking
SHIP_FCN_READREDIRECT 32 Read data to another host
SHIP_FCN_READREDIRECTNOBLK 33 Read Redirect data - non-blocking
SHIP_FCN_PEEK 34 Read data - peek and do not delete

The status values for SHIP status are as follows:
SHIP_STAT_SUCCESS 0 Successful transaction
SHIP_STAT_MUSTINIT 1 Initialize not done
SHIP_STAT_UNREC_HOST 2 Unrecognized Host ID
SHIP_STAT_UNREC_FCN 3 Unrecognized function code
SHIP_STAT_INVLENGTH 4 Invalid length
SHIP_STAT_INVPPSOC 5 Invalid PP Socket ID words
SHIP_STAT_INVPARAM 6 Invalid parameter to call
SHIP_STAT_CMDERROR 7 Error in command
SHIP_STAT_SEQUENCE 8 Command out of sequence
SHIP_STAT_CANCELED 9 Command was canceled
SHIP_STAT_DESTUNREACH 10 Destination is not reachable
SHIP_STAT_NOROOM 11 No room for write

Page56

The values for the address families are as follows:
SHIP_AF_INET 1 Internet address family

The values for the socket types are as follows:
SHIP_SOCK_TYPE_STREAM 1 Stream protocol type
SHIP_SOCK_TYPE_DGRAM 2 Datagram protocol type
SHIP_SOCK_TYPE_RAW 3 Raw type
SHIP_SOCK_TYPE_SEQPKT 4 Sequential packets
SHIP_SOCK_TYPE_RDM 5 Reliable delivered message

The values for the protocol types are as follows:
SHIP_PROT_UNSPECIFIED 1 Unspecified protocol
SHIP_IPPROTO_UDP 2 UDP
SHIP_IPPROTO_TCP 3 TCP
SHIP_IPPROTO_ICMP 4 ICMP
SHIP_IPPROTO_RAW 5 Raw

The values for the CREATE option field are as follows:
SHIP_CREATE_OPT_NONE 0 No options
SHIP_CREATE_OPT_EXACT_SIZE 1 Send exact amount of data

The values for the SHIP socket option levels are as follows:
SHIP_SOL_SOCKET 1 Option applied to socket itself
SHIP_SOL_TCP 2 Option applies to TCP
SHIP_SOL_UDP 3 Option applies to UDP
SHIP_SOL_IP 4 Option applies to IP

The values for the SHIP socket options are as follows:
SHIP_SOPT_IP 1 IP options
SHIP_SOPT_TCP_MAXSEG 2 TCP Maximum segment size
SHIP_SOPT_TCP_NODELAY 3 TCP Do not delay send
SHIP_SOPT_SOC_BROADCAST 4 Permit sending broadcast
SHIP_SOPT_SOC_DONTROUTE 5 Just use interface address
SHIP_SOPT_SOC_ERROR 6 Get error status and clear
SHIP_SOPT_SOC_KEEPALIVE 7 Keep connections alive
SHIP_SOPT_SOC_LINGER 8 Linger on close if data present
SHIP_SOPT_SOC_OOBINLINE 9 Leave received OOB data in-line
SHIP_SOPT_SOC_RCVBUF 10 Receive buffer size
SHIP_SOPT_SOC_SNDBUF 11 Send buffer size
SHIP_SOPT_SOC_RCVLOWAT 12 Receive low-water mark
SHIP_SOPT_SOC_SNDLOWAT 13 Send low-water mark
SHIP_SOPT_SOC_RCVTIMEO 14 Reveive timeout
SHIP_SOPT_SOC_SNDTIMEO 15 Send timeout
SHIP_SOPT_SOC_REUSEADDR 16 Allow local address reuse
SHIP_SOPT_SOC_TYPE 17 Get socket type

Page57

SHIP_SOPT_SOC_USELOOPBACK 18 Bypass hardware when possible
SHIP_SOPT_LOC_NOBLOCK 19 Turn on or off local blocking
SHIP_SOPT_LOC_RETRY 20 Turn on or off local retry on error
SHIP_SOPT_LOC_QACK 21 Turn on or off local quick acks

The values for the SHIP states are as follows:
SHIP_STATE_UNINIT 0 Not initialized
SHIP_STATE_IDLE 1 Idle
SHIP_STATE_CREATED 2 Created
SHIP_STATE_BOUND 4 Bound to address
SHIP_STATE_LISTEN 8 Listening
SHIP_STATE_ACCEPT 0x10 Accepted connection
SHIP_STATE_CONNECTING 0x20 Connection in progress
SHIP_STATE_CONNECTED 0x40 Connected
SHIP_STATE_CLOSING 0x80 Closing in progress
SHIP_STATE_STATUS_READ_PEND 0x100 Status read pending
SHIP_STATE_STATUS_WRITE_PEND 0x200 Status write pending

These are values from errno.h that could be returned by socket calls
SHIP_ERR_EPERM 1 Not owner
SHIP_ERR_EINTR 2 Interrupted system call
SHIP_ERR_EIO 3 I/O error
SHIP_ERR_ENXIO 4 No such device or address
SHIP_ERR_E2BIG 5 Arg list too long
SHIP_ERR_ENOMEM 6 Not enough core
SHIP_ERR_EACCES 7 Permission denied
SHIP_ERR_EFAULT 8 Bad address
SHIP_ERR_EINVAL 9 Invalid argument
SHIP_ERR_ENFILE 10 File table overflow
SHIP_ERR_EMFILE 11 Too many open files
SHIP_ERR_EWOULDBLOCK 12 Operation would block
SHIP_ERR_EINPROGRESS 13 Operation now in progress
SHIP_ERR_EALREADY 14 Operation already in progress
SHIP_ERR_ENOTSOCK 15 Socket operation on non-socket
SHIP_ERR_EDESTADDRREQ 16 Destination address required
SHIP_ERR_EMSGSIZE 17 Message too long
SHIP_ERR_EPROTOTYPE 18 Protocol wrong type for socket
SHIP_ERR_ENOPROTOOPT 19 Protocol not available
SHIP_ERR_EPROTONOSUPPORT 20 Protocol not supported
SHIP_ERR_ESOCKTNOSUPPORT 21 Socket type not supported
SHIP_ERR_EOPNOTSUPP 22 Op not supported on socket
SHIP_ERR_EPFNOSUPPORT 23 Prot family not supported
SHIP_ERR_EAFNOSUPPORT 24 Addr family not sup by prot family
SHIP_ERR_EADDRINUSE 25 Address already in use

Page58

SHIP_ERR_EADDRNOTAVAIL 26 Can't assign requested address
SHIP_ERR_ENETDOWN 27 Network is down
SHIP_ERR_ENETUNREACH 28 Network is unreachable
SHIP_ERR_ENETRESET 29 Network dropped conn on reset
SHIP_ERR_ECONNABORTED 30 Software caused conn abort
SHIP_ERR_ECONNRESET 31 Connection reset by peer
SHIP_ERR_ENOBUFS 32 No buffer space available
SHIP_ERR_EISCONN 33 Socket is already connected
SHIP_ERR_ENOTCONN 34 Socket is not connected
SHIP_ERR_ESHUTDOWN 35 Can't send after sock shutdown
SHIP_ERR_ETOOMANYREFS 36 Too many ref: can't splice
SHIP_ERR_ETIMEDOUT 37 Connection timed out
SHIP_ERR_ECONNREFUSED 38 Connection refused
SHIP_ERR_EHOSTDOWN 39 Host is down
SHIP_ERR_EHOSTUNREACH 40 No route to host
SHIP_ERR_ENOTEMPTY 41 Directory not empty
SHIP_ERR_EPROCLIM 42 Too many processes
SHIP_ERR_EUSERS 43 Too many users
SHIP_ERR_ESTALE 44
SHIP_ERR_EREMOTE 45
SHIP_ERR_ENOLCK 46 LOCK_MAX exceeded
SHIP_ERR_ENOSYS 47 Function not implemented
SHIP_ERR_EPIPE 48 Broken pipe (socket not available)

Page59

Appendix B - SHIP Structures

The addresses of hosts are passed to SHIP using the SOCKADDR structure. This
structure is defined below, and is based on the NET-2 release of BSD networking.

The length field is a byte and specifies the size in bytes of the SOCKADDR structure.
For internet addresses, the length is always 16.

The Family is a byte that specifes the type of address, and is specifed above in the SHIP
Values appendix.

The Port is the port to which this address is to be used, and is a 16-bit number.

The Address is an unsiged long, for the Internet address family, and specifes the
Internet address of the host.

The next two fields are unused, and must be zero.

Length Family Port
Address
Zero
Zero

Page60

Appendix C - SHIP State Machines

The following state machine definitions describe the protocol handling for SHIP, from
the point of view of the PP (Protocol Processor), which is event-driven.

The HOST processor is the master in most cases, since it generates most of the events,
based on Socket calls from the Application program.

The following table assumes that all operations succeed (no connection attempts
refused, etc.). Error condition handling, such as refused connections, timeouts, lost packets,
etc., are better described via pseudocode, as the table would become impossible to read if all
error conditions were included.

Page61

SHIP Connection State Table

Connection State Definitions

The IDLE state is the state that unused socket control blocks are initialized to.

The CREATED state indicates that the socket has been created, i.e. a socket control block and a
local socket ID have been allocated to correspond to the specified Host ID. No external
actions (i.e. Transmission over the network) are triggered by entering this state.

The BOUND state indicates that a BIND operation has been issued. No external actions are
triggered by entering this state. LISTEN operations are not allowed until this state has
been reached.

This LISTEN state indicates that a LISTEN operation has been issued. No external actions are
triggered by entering this state. ACCEPT operations are not allowed until this state has
been entered.

The ACCEPT state indicates that the Socket is available for connection attempts from external
nodes. No external actions are triggered by entering this state. This state can only be
exited by receiving a CLOSE or SHUTDOWN request, or by reception of a connection
request from the Network.

The CONNECTING state indicates that a CONNECT or ACCEPT command has been issued
and that a connection handshake sequence is in progress. This state can be entered from
the CREATED state due to the CONNECT command being received, or it can be
entered from the ACCEPT state due to a connection request being received from the
Network. This can trigger external transmissions which cause the Transport Protocol to
complete the connection.

States->

Input

Events

Idle

0

Connected

1

Bound

2

Listen

3

Accept

4

Connecting

5

Connected

6

Closing

7

INIT -> 0 -> 0 -> 0 -> 0 -> 0 -> 0 -> 0 -> 0

CREATE -> 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1

BIND Error -> 2 Error Error Error Error Error Error

CONNECT Error -> 5 -> 5 Error Error Error Error Error

LISTEN Error Error -> 3 Error Error Error Error Error

ACCEPT Error Error Error -> 4 Error Error Error Error

SHUTDOWN Error -> 0 -> 0 -> 0 -> 0 -> 0 -> 7 -> 0

CLOSE Error -> 0 -> 0 -> 0 -> 0 -> 0 -> 0 -> 0

READ Error Error Error Error Error Error Note 3 Error

PEEK Error Error Error Error Error Error Note 3 Error

WRITE Error Error Error Error Error Error Note 3 Error

STATUS Error Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Error

CANCEL Error Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Error

GETSOCKOP Error Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Error

SETSOCKOP Error Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Error

Conn Req Error Error Error Error -> 5 Error Error Error

Conn Cplt Error Error Error Error Error -> 6 Error Error

Close Req Error Error Error Error Error -> 7 -> 7 -> 7

Close Cpl Error Error Error Error Error -> 0 -> 0 -> 0

Page62

The CONNECTED state is entered after the Transport Protocol has completed the necessary
transactions to complete the connection. This state allows data transfers to take place.

The CLOSING state is entered when one partner of the connection has indicated that it is
ready to close the connection. When both ends of the connection complete all data
transfer, and the necessary transactions to fully close the Transport session have
occurred, the Socket control block is set back to the IDLE state.

Input Event Definitions

Input Requests from the Host
INIT

The INIT request is used to reinitialize the entire SHIP protocol engine. All outstanding
buffers, requests, etc. discarded and all control blocks are reset to their initial state.

CREATE
The CREATE request is used to create a new socket. The socket create response will
return a token that uniquely identifies the new socket. This request will fail if
insufficient resources exist to allocate a new socket.

BIND
The BIND request associates a local address with a socket. In the case of a TCP socket, it
specifies a TCP port number. This request will fail if the token does not refer to a valid
socket or if the socket is already associated with a local address created by a previous
bind request or a connect request.

LISTEN
The LISTEN request specifies the number of incoming connection requests that a
previously bound socket may queue up. This call will fail if the socket is invalid or not
bound. It will also fail if the socket has an active connection created with a CONNECT
request.

ACCEPT
The ACCEPT request accepts an incoming request on a socket that has been properly
initialized by BIND and LISTEN. This request has two forms, blocking and
non-blocking. The blocking form waits for an incoming connection before returning a
response to the host. The non-blocking form returns a response immediately if an
incoming request was queued. If not, it will indicate no connection. A successful
ACCEPT request allocates a new socket for the accepted connection and returns the
new token to the host.

Page63

CONNECT
The CONNECT request attempts to make a connection to a remote host. The request
must specify a remote TCP host and port. The socket may have been the subject of a
BIND request but not a LISTEN request. This request will fail if the socket has not been
properly initialized, the remote host refuses the connection, or cannot be reached.

SHUTDOWN
The SHUTDOWN request gracefully closes a connection. The request may indicate no
more data will be sent, no more data will be accepted, or no more data will be accepted
or sent.

CLOSE
The CLOSE request causes the input and output queues to be flushed. Any outstanding
reads, writes, or status requests will be completed with a status indicating an aborted
request. The socket will be closed. The response to this request will be returned as soon
as all outstanding requests have been responded to, and the socket has been marked
closed. It will not wait for any response from the remote host.

STATUS
The STATUS request returns a response containing the status of a socket. There are two
forms of this request, blocking and non-blocking. The non-blocking form returns
immediately. The blocking form returns when either there is data to read, or that data
may be sent. If either are true, the response is returned immediately. If the socket is in
the listen state, a status request returns the number of incoming connections currently
queued.

CANCEL
The CANCEL request causes a blocking STATUS request on the specified socket to be
answered immediately, or it causes a blocking ACCEPT or blocking READ request on
the specified socket to be terminated.

GETSOCKOPT
The GETSOCKOPT request returns the value(s) of the specified option(s). These options
are listed in the UNIX man-pages.

SETSOCKOPT
The SETSOCKOPT request sets the value(s) of the specified option(s).

Input Events from the Network
"Conn Req" corresponds to a connection request, from the peer network node, indicating

that it wishes to begin the connection handshake sequence.

"Conn Cplt" indicates that the connection handshake sequence has completed, causing the
connection to be established.

 "Close Req" corresponds to a close request, from the peer network node, indicating that it
wishes to begin the close handshake sequence.

Page64

"Close Cpl" indicates that the close handshake sequence has completed, or a suitable
timeout caused the connection to be closed anyway.

Notes:
Note 1. CREATE is issued to allocate a new Socket; by definition the newly allocated Control

Block MUST be in the Idle state.

Note 2. These commands can be issued in any state except IDLE or CLOSING. They have the
effect of setting various option and status bits in the SCB, but do not cause changes in
the State of the Connection State machine.

Note 3. These commands are legal for these states, and do not change the state of this State
machine. However, they do affect the data transfer state machines, as described below.

Page65

